New Multivariate Dependence Measures and Applications to Neural Ensembles
نویسندگان
چکیده
We develop two new multivariate statistical dependence measures. The first, based on the Kullback-Leibler distance, results in a single value that indicates the general level of dependence among the random variables. The second, based on an orthonormal series expansion of joint probability density functions, provides more detail about the nature of the dependence. We apply these dependence measures to the analysis of simultaneous recordings made from multiple neurons, in which dependencies are time-varying and potentially information bearing.
منابع مشابه
ELEC 599 Project Report Multivariate Dependence Measures with Applications to Neural Ensembles
In this paper I develop two new multivariate dependence measures to aid in the analysis of neural population coding. The first, which is based on the Kullback-Leibler distance, results in a single value that indicates the general level of dependence among several random variables. The second, which is based on an orthonormal series expansion of the joint density function, provides more detail a...
متن کاملHessian Stochastic Ordering in the Family of multivariate Generalized Hyperbolic Distributions and its Applications
In this paper, random vectors following the multivariate generalized hyperbolic (GH) distribution are compared using the hessian stochastic order. This family includes the classes of symmetric and asymmetric distributions by which different behaviors of kurtosis in skewed and heavy tail data can be captured. By considering some closed convex cones and their duals, we derive some necessary and s...
متن کاملOnline Monitoring and Fault Diagnosis of Multivariate-attribute Process Mean Using Neural Networks and Discriminant Analysis Technique
In some statistical process control applications, the process data are not Normally distributed and characterized by the combination of both variable and attributes quality characteristics. Despite different methods which are proposed separately for monitoring multivariate and multi-attribute processes, only few methods are available in the literature for monitoring multivariate-attribute proce...
متن کاملThe copula approach to characterizing dependence structure in neural populations.
The question as to the role that correlated activity plays in the coding of information in the brain continues to be one of the most important in neuroscience. One approach to understanding this role is to formally model the ensemble responses as multivariate probability distributions. We have previously introduced alternatives to linear assumptions of multivariate Gaussian dependence for spike...
متن کاملSimultaneous Monitoring of Multivariate-Attribute Process Mean and Variability Using Artificial Neural Networks
In some statistical process control applications, the quality of the product is characterized by thecombination of both correlated variable and attributes quality characteristics. In this paper, we propose anovel control scheme based on the combination of two multi-layer perceptron neural networks forsimultaneous monitoring of mean vector as well as the covariance matrix in multivariate-attribu...
متن کامل